OpenSwitch (OPX)

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 2724 is passing Here is how to embed it:

These are the Passing level criteria. You can also view the Silver or Gold level criteria.

        

 Basics 13/13

  • Identification

    The OpenSwitch(OPX) platform is an open source, Linux-based network operating system (NOS) for disaggregated switches built around OCP-compliant hardware, utilizing an open network installation environment (ONIE) boot loader. OPX supports a rich set of L2/L3 networking features that are compatible with a wide variety of 10G, 25G, 40G and 100G hardware platforms from multiple vendors.

    What programming language(s) are used to implement the project?
  • Basic project website content


    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]

    The project website MUST provide information on how to: obtain, provide feedback (as bug reports or enhancements), and contribute to the software. [interact]

    La información sobre cómo contribuir DEBE explicar el proceso de contribución (por ejemplo, ¿se utilizan "pull requests" en el proyecto?) (URL required) [contribution]

    The information on how to contribute SHOULD include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]
  • FLOSS license

    What license(s) is the project released under?



    The software produced by the project MUST be released as FLOSS. [floss_license]

    The Apache-2.0 license is approved by the Open Source Initiative (OSI).



    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]

    The Apache-2.0 license is approved by the Open Source Initiative (OSI).



    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]

    https://github.com/open-switch/opx-docs/wiki/Repositories List of repositories and each repo has readme and license (copyright) files.


  • Documentation


    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]

    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]
  • Other


    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]

    https://www.openswitch.net/ Application is downloaded via apt-get.



    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]

    https://chat.openswitch.net for live chat and discussion with the developer community. Weekly TSC calls ( https://github.com/open-switch/opx-docs/wiki/Technical-Steering-Committee-Meeting-Details). Community mailing lists (https://lists.openswitch.net)



    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]

    The project MUST be maintained. [maintained]


(Advanced) What other users have additional rights to edit this badge entry? Currently: []



  • Repositorio público para el control de versiones de código fuente


    El proyecto DEBE tener un repositorio público para el control de versiones de código fuente que sea legible públicamente y tenga URL. [repo_public]

    Code repositories * https://github.com/open-switch * 59 public repositories * Provides a list of all OPX repositories which are mapped to architecture components * https://github.com/open-switch/opx-docs/wiki/Repositories



    El repositorio fuente del proyecto DEBE rastrear qué cambios se realizaron, quién realizó los cambios y cuándo se realizaron los cambios. [repo_track]

    All source code is hosted on github for code version management.



    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]

    Code review * OPX uses the Github Pull Request interface for code review * Overview of code review norms, practices, conventions, rules. * To what extent are external/private code review systems used? None Continuous Integration tooling * CodeFactor * BuildKite, whose pipeline consists of: * Setup * Docker Hub * Build * dbp * Smoketest * Docker Hub * AWS * Github DCO



    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]

    hosted on github. https://github.com/open-switch


  • Numeración única de versión


    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]

    Each new release is numbered and incremented. Current Release 3.1.0 (December 2018)



    It is SUGGESTED that the Semantic Versioning (SemVer) or Calendar Versioning (CalVer) version numbering format be used for releases. It is SUGGESTED that those who use CalVer include a micro level value. [version_semver]


    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]

    Versions are tagged in the repositories.


  • Notas de lanzamiento


    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]

    The release notes MUST identify every publicly known run-time vulnerability fixed in this release that already had a CVE assignment or similar when the release was created. This criterion may be marked as not applicable (N/A) if users typically cannot practically update the software themselves (e.g., as is often true for kernel updates). This criterion applies only to the project results, not to its dependencies. If there are no release notes or there have been no publicly known vulnerabilities, choose N/A. [release_notes_vulns]

    No reported CVEs.


  • Bug-reporting process


    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    Go to issues in respective Github repositories.



    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]


    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]


    El proyecto DEBE tener un archivo públicamente disponible para informes y respuestas para búsquedas posteriores. (URL required) [report_archive]
  • Proceso de informe de vulnerabilidad


    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]

    https://github.com/open-switch/opx-docs/wiki/Report-bugs has an email that you can report vulnerabilities.

    To report and discuss security issues, you can send an email to security@lists.openswitch.net.



    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]

    The security group receives the venerability reports to a private list and can make determination on how to publish it. https://github.com/open-switch/opx-docs/wiki/Report-bugs



    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]

    No vulnerabilities reported to establish response baseline.


  • Working build system


    Si el software generado por el proyecto requiere ser construido para su uso, el proyecto DEBE proporcionar un sistema de compilación que pueda satisfactoriamente reconstruir automáticamente el software a partir del código fuente. [build]

    The project provides a working build system via a Docker container and build scripts. Refer to the “opx-build” repository and its README for more information.



    Se SUGIERE que se utilicen herramientas comunes para construir el software. [build_common_tools]

    Common tools are used for building the software. Generally, each repository uses a “Debian-style” build and Makefile/script infrastructure.



    El proyecto DEBERÍA ser construible usando solo herramientas FLOSS. [build_floss_tools]

    The project is buildable using only FLOSS tools. See previous responses.


  • Automated test suite


    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). The project MUST clearly show or document how to run the test suite(s) (e.g., via a continuous integration (CI) script or via documentation in files such as BUILD.md, README.md, or CONTRIBUTING.md). [test]

    Our automated test suite is published in the “opx-test” repository. The test framework is written in Ansible and Python.



    Un conjunto de pruebas DEBERÍA ser invocable de forma estándar para ese lenguaje. [test_invocation]

    The test suite is invokable in a standard way for Ansible.



    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]

    The test suite covers the “master” code branch, and it consists largely of functional tests.



    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]

    Continuous integration is implemented using Buildkite. You can see that it is run on each pull-request.


  • New functionality testing


    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]

    The project does have an informal general policy that major new functionality should be accounted for in the automated test suite in the “opx-test” repository.



    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]

    A recent example is when new scripts were recently written in the “opx-tools” repo, tests for those scripts were also added to the “opx-test” repo. You can see the PR that is about to merge: https://github.com/open-switch/opx-test/pull/25



    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]

    The tests are being added in practice, but the policy isn’t documented anywhere AFAIK.


  • Banderas de advertencia


    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]

    This should be evident in each component repository’s Makefile.am in flags like COMMON_HARDEN_FLAGS, C_HARDEN_FLAGS, and LD_HARDEN_FLAGS.



    El proyecto DEBE abordar las advertencias. [warnings_fixed]

    The project does address warnings.



    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

    We feel that we are maximally strict with warnings where practical.


  • Conocimiento de desarrollo seguro


    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]

    Several OPX Developers are trained on secure software development practices.



    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]

    See above.


  • Use buenas prácticas criptográficas

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and reviewed by experts (if cryptographic protocols and algorithms are used). [crypto_published]

    Cryptographic protocols and algorithms are not used in the software produced by the project. Where applicable, the OPX operating system relies on the standard applications provided by the underlying Debian distribution to provide cryptographic protocols and algorithms (e.g., OpenSSH, OpenSSL, etc.).



    Si el software producido por el proyecto es una aplicación o una librería, y su propósito principal no es implementar criptografía, entonces DEBE SOLAMENTE invocar un software específicamente diseñado para implementar funciones criptográficas; NO DEBERÍA volver a implementar el suyo. [crypto_call]


    All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. [crypto_floss]


    The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are completely disabled. [crypto_keylength]


    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]


    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]


    The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the future. [crypto_pfs]


    If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also OWASP Password Storage Cheat Sheet. [crypto_password_storage]


    The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure. [crypto_random]

  • Entrega garantizada contra ataques de hombre en el medio (MITM)


    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]

    we use https for and github for download resources.



    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]

  • Vulnerabilidades públicamente conocidas corregidas


    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]

    here are no unpatched publicly known vulnerabilities in our software project.



    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

    If/when vulnerabilities are reported, we will fix them rapidly.


  • Otros problemas de seguridad


    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]

  • Análisis estático de código


    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]

    CodeFactor is run against all pull-requests



    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]

    This is provided by CodeFactor



    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]


    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

    CodeFactor is run against all pull-requests


  • Dynamic code analysis


    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]


    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]


    It is SUGGESTED that the project use a configuration for at least some dynamic analysis (such as testing or fuzzing) which enables many assertions. In many cases these assertions should not be enabled in production builds. [dynamic_analysis_enable_assertions]


    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]


This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit Trishan de Lanerolle and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: Trishan de Lanerolle.
Entry created on 2019-04-16 20:28:09 UTC, last updated on 2019-04-19 19:39:20 UTC. Last achieved passing badge on 2019-04-19 15:53:14 UTC.

Back