ORAN-SC: O-DU High ( Distributed Unit High)

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 4656 is passing Here is how to embed it:

These are the Passing level criteria. You can also view the Silver or Gold level criteria.

        

 Basics 13/13

  • Identification

    The O-DU High project implements the functionality of L2 layers of a 5G Protocol stack in Stand Alone (SA) mode. The L2 Layers include the 5G NR RLC, 5G NR MAC and 5G NR Scheduler.

    5G NR RLC layer provides services for transferring the control and data messages between MAC layer and O-CU (via DU App).

    5G NR MAC layer uses the services of the NR physical layer (O-DU Low) to send and receive data on the various logical channels using multiplexing and demultiplexing techniques.

    5G NR SCH layer allocates resources in UL and DL for cell and UE based procedures. 5G NR SCH is completely encapsulated within the 5G NR MAC i.e., all interactions of the 5G NR SCH is via the 5G NR MAC.

    The O-DU High interacts with O-CU on the F1AP interface, O-DU Low on the FAPI interface, Near RT RIC on the E2AP interface and OAM/non RT RIC/SMO on the O1 interface.

    What programming language(s) are used to implement the project?
  • Basic project website content


    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]

    The project website MUST provide information on how to: obtain, provide feedback (as bug reports or enhancements), and contribute to the software. [interact]

    JIRA, gerrit details on O-DU High



    The information on how to contribute MUST explain the contribution process (e.g., are pull requests used?) (URL required) [contribution]

    Procedure on Tutorial: Making code contributions to O-RAN open source project: https://wiki.o-ran-sc.org/x/owA3

    Gerrit URL : https://gerrit.o-ran-sc.org/r/admin/repos/o-du/l2



    The information on how to contribute SHOULD include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]
  • FLOSS license

    What license(s) is the project released under?



    The software produced by the project MUST be released as FLOSS. [floss_license]

    The Apache-2.0 license is approved by the Open Source Initiative (OSI).



    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]

    The Apache-2.0 license is approved by the Open Source Initiative (OSI).



    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]

    Available in root of the O-DU High repo https://gerrit.o-ran-sc.org/r/admin/repos/o-du/l2


  • Documentation


    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]

    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]

  • Other


    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]

    Given only https: URLs.



    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]

    Some of the discussion mechanisms are mailing lists, individual e-mails, O-RAN meetings and O-RAN wiki pages.



    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]


    The project MUST be maintained. [maintained]


(Advanced) What other users have additional rights to edit this badge entry? Currently: [10026]



  • Public version-controlled source repository


    The project MUST have a version-controlled source repository that is publicly readable and has a URL. [repo_public]

    The project's source repository MUST track what changes were made, who made the changes, and when the changes were made. [repo_track]

    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]


    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]
  • Unique version numbering


    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]

    Versions of Docker images can be found at https://nexus3.o-ran-sc.org



    It is SUGGESTED that the Semantic Versioning (SemVer) or Calendar Versioning (CalVer) version numbering format be used for releases. It is SUGGESTED that those who use CalVer include a micro level value. [version_semver]


    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]

  • Release notes


    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]

    The release notes MUST identify every publicly known run-time vulnerability fixed in this release that already had a CVE assignment or similar when the release was created. This criterion may be marked as not applicable (N/A) if users typically cannot practically update the software themselves (e.g., as is often true for kernel updates). This criterion applies only to the project results, not to its dependencies. If there are no release notes or there have been no publicly known vulnerabilities, choose N/A. [release_notes_vulns]

    No major vulnerabilities have been identified.


  • Bug-reporting process


    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]


    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]


    The project MUST have a publicly available archive for reports and responses for later searching. (URL required) [report_archive]
  • Vulnerability report process


    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]

    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]


    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]

  • Working build system


    If the software produced by the project requires building for use, the project MUST provide a working build system that can automatically rebuild the software from source code. [build]

    Docker images can be found at https://nexus3.o-ran-sc.org



    It is SUGGESTED that common tools be used for building the software. [build_common_tools]

    Docker images can be found at https://nexus3.o-ran-sc.org



    The project SHOULD be buildable using only FLOSS tools. [build_floss_tools]

    Docker images can be found at https://nexus3.o-ran-sc.org


  • Automated test suite


    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). The project MUST clearly show or document how to run the test suite(s) (e.g., via a continuous integration (CI) script or via documentation in files such as BUILD.md, README.md, or CONTRIBUTING.md). [test]


    A test suite SHOULD be invocable in a standard way for that language. [test_invocation]


    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]


    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]

    New Jenkins job for the automation test suite to be added.


  • New functionality testing


    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]

    O-DU High code currently tested using test stubs which trigger various scenario in a sequence



    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]

    Stub-based testing for UE Attach call flow.

    Can be extended to test further features.



    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]

    Steps to run test stub are available under file "l2/docs/README"


  • Warning flags


    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]

    Unable to add as a compiler flag since all existing warnings are a result of ASN tool generated code



    The project MUST address warnings. [warnings_fixed]

    The only warnings seen are from the code generated using ASN tool



    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

    The only warnings seen are from the code generated using ASN tool


  • Secure development knowledge


    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]


    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]

  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and reviewed by experts (if cryptographic protocols and algorithms are used). [crypto_published]

    TLS in progress in D release



    If the software produced by the project is an application or library, and its primary purpose is not to implement cryptography, then it SHOULD only call on software specifically designed to implement cryptographic functions; it SHOULD NOT re-implement its own. [crypto_call]

    TLS in progress in D release



    All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. [crypto_floss]

    TLS in progress in D release



    The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are completely disabled. [crypto_keylength]

    TLS in progress in D release



    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]

    TLS in progress in D release



    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]

    TLS in progress in D release



    The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the future. [crypto_pfs]

    TLS in progress in D release



    If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also OWASP Password Storage Cheat Sheet. [crypto_password_storage]

    Needs deeper checking from O1 perspective



    The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure. [crypto_random]

    TLS in progress in D release


  • Secured delivery against man-in-the-middle (MITM) attacks


    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]

    TLS in progress in D release



    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]

    TLS in progress in D release


  • Publicly known vulnerabilities fixed


    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]

    JIRA being used currently



    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

  • Other security issues


    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]

  • Static code analysis


    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]

    We have created a new Jenkins job sonarqube for o-du-l2 module under ORAN sandbox. https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/

    There are two issues: 1- While this new job compiles o-du-l2 module below error observed: 14:24:40 /w/workspace/o-du-l2-cmake-sonarqube/src/cm/cm_inet.c:128:10: fatal error: netinet/sctp.h: No such file or directory 14:24:40 #include

    To resolve this libsctp-dev should be installed.

                2- This job could not finish in default 15 mins time, so timeout parameter under build environment should be changed. (tried with 120)
    

    Temporary solution applied: Above issues resolved by putting below install command in shell script manually. sudo apt install -y libsctp-dev

    For timeout changed timeout variable to 120.

    With above changes the job finished successfully and below sonarcloud updated for o-du-l2 module. https://sonarcloud.io/dashboard?id=o-ran-sc_o-du-l2

    NOTE: As of now there is another issue present related to workspace in sandbox https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/ws/

    LF ticket has already been raised for this as below. https://jira.linuxfoundation.org/plugins/servlet/theme/portal/2/IT-22356



    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]

    We have created a new Jenkins job sonarqube for o-du-l2 module under ORAN sandbox. https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/

    There are two issues: 1- While this new job compiles o-du-l2 module below error observed: 14:24:40 /w/workspace/o-du-l2-cmake-sonarqube/src/cm/cm_inet.c:128:10: fatal error: netinet/sctp.h: No such file or directory 14:24:40 #include

    To resolve this libsctp-dev should be installed.

                2- This job could not finish in default 15 mins time, so timeout parameter under build environment should be changed. (tried with 120)
    

    Temporary solution applied: Above issues resolved by putting below install command in shell script manually. sudo apt install -y libsctp-dev

    For timeout changed timeout variable to 120.

    With above changes the job finished successfully and below sonarcloud updated for o-du-l2 module. https://sonarcloud.io/dashboard?id=o-ran-sc_o-du-l2

    NOTE: As of now there is another issue present related to workspace in sandbox https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/ws/

    LF ticket has already been raised for this as below. https://jira.linuxfoundation.org/plugins/servlet/theme/portal/2/IT-22356



    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]

    We have created a new Jenkins job sonarqube for o-du-l2 module under ORAN sandbox. https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/

    There are two issues: 1- While this new job compiles o-du-l2 module below error observed: 14:24:40 /w/workspace/o-du-l2-cmake-sonarqube/src/cm/cm_inet.c:128:10: fatal error: netinet/sctp.h: No such file or directory 14:24:40 #include

    To resolve this libsctp-dev should be installed.

                2- This job could not finish in default 15 mins time, so timeout parameter under build environment should be changed. (tried with 120)
    

    Temporary solution applied: Above issues resolved by putting below install command in shell script manually. sudo apt install -y libsctp-dev

    For timeout changed timeout variable to 120.

    With above changes the job finished successfully and below sonarcloud updated for o-du-l2 module. https://sonarcloud.io/dashboard?id=o-ran-sc_o-du-l2

    NOTE: As of now there is another issue present related to workspace in sandbox https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/ws/

    LF ticket has already been raised for this as below. https://jira.linuxfoundation.org/plugins/servlet/theme/portal/2/IT-22356



    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

    We have created a new Jenkins job sonarqube for o-du-l2 module under ORAN sandbox. https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/

    There are two issues: 1- While this new job compiles o-du-l2 module below error observed: 14:24:40 /w/workspace/o-du-l2-cmake-sonarqube/src/cm/cm_inet.c:128:10: fatal error: netinet/sctp.h: No such file or directory 14:24:40 #include

    To resolve this libsctp-dev should be installed.

                2- This job could not finish in default 15 mins time, so timeout parameter under build environment should be changed. (tried with 120)
    

    Temporary solution applied: Above issues resolved by putting below install command in shell script manually. sudo apt install -y libsctp-dev

    For timeout changed timeout variable to 120.

    With above changes the job finished successfully and below sonarcloud updated for o-du-l2 module. https://sonarcloud.io/dashboard?id=o-ran-sc_o-du-l2

    NOTE: As of now there is another issue present related to workspace in sandbox https://jenkins.o-ran-sc.org/sandbox/view/All/job/o-du-l2-cmake-sonarqube/ws/

    LF ticket has already been raised for this as below. https://jira.linuxfoundation.org/plugins/servlet/theme/portal/2/IT-22356


  • Dynamic code analysis


    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]

    Valgrind being used by developers



    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]

    Valgrind being used by developers



    It is SUGGESTED that the project use a configuration for at least some dynamic analysis (such as testing or fuzzing) which enables many assertions. In many cases these assertions should not be enabled in production builds. [dynamic_analysis_enable_assertions]

    Valgrind being used by developers



    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]

    Valgrind being used by developers



This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit Trishan de Lanerolle and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: Trishan de Lanerolle.
Entry created on 2021-02-17 04:19:58 UTC, last updated on 2021-06-30 10:56:35 UTC. Last achieved passing badge on 2021-06-30 10:56:35 UTC.

Back