Project Horizon

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 3332 is in_progress Here is how to embed it:

These are the Silver level criteria. You can also view the Passing or Gold level criteria.

        

 Basics 11/17

  • Identification

    Next-generation installation system for the Adélie Linux distribution

  • Prerequisites


    The project MUST achieve a passing level badge. [achieve_passing]

  • Basic project website content


    The information on how to contribute MUST include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]
  • Project oversight


    The project SHOULD have a legal mechanism where all developers of non-trivial amounts of project software assert that they are legally authorized to make these contributions. The most common and easily-implemented approach for doing this is by using a Developer Certificate of Origin (DCO), where users add "signed-off-by" in their commits and the project links to the DCO website. However, this MAY be implemented as a Contributor License Agreement (CLA), or other legal mechanism. (URL required) [dco]


    The project MUST clearly define and document its project governance model (the way it makes decisions, including key roles). (URL required) [governance]

    As part of the Adélie Linux project, Project Horizon is governed by the Adélie Linux Organisation Charter: https://code.foxkit.us/adelie/docs/blob/master/src/charters/0001-org.rst



    The project MUST adopt a code of conduct and post it in a standard location. (URL required) [code_of_conduct]

    The project MUST clearly define and publicly document the key roles in the project and their responsibilities, including any tasks those roles must perform. It MUST be clear who has which role(s), though this might not be documented in the same way. (URL required) [roles_responsibilities]

    The README contains key contributors and their roles. https://code.foxkit.us/adelie/horizon



    The project MUST be able to continue with minimal interruption if any one person dies, is incapacitated, or is otherwise unable or unwilling to continue support of the project. In particular, the project MUST be able to create and close issues, accept proposed changes, and release versions of software, within a week of confirmation of the loss of support from any one individual. This MAY be done by ensuring someone else has any necessary keys, passwords, and legal rights to continue the project. Individuals who run a FLOSS project MAY do this by providing keys in a lockbox and a will providing any needed legal rights (e.g., for DNS names). (URL required) [access_continuity]

    Project Horizon inherits our geographically-diverse Platform Group leadership (as shown at https://code.foxkit.us/adelie/horizon/-/project_members and others) which ensures continuation of the project including issue maintenance, merge requests, and releases.



    The project SHOULD have a "bus factor" of 2 or more. (URL required) [bus_factor]

  • Documentation


    The project MUST have a documented roadmap that describes what the project intends to do and not do for at least the next year. (URL required) [documentation_roadmap]

    The Scope section of our Project Vision document ( https://horizon.adelielinux.org/vision/scope.html ) contains a roadmap of desired features for future releases.



    The project MUST include documentation of the architecture (aka high-level design) of the software produced by the project. If the project does not produce software, select "not applicable" (N/A). (URL required) [documentation_architecture]


    The project MUST document what the user can and cannot expect in terms of security from the software produced by the project (its "security requirements"). (URL required) [documentation_security]

    The project MUST provide a "quick start" guide for new users to help them quickly do something with the software. (URL required) [documentation_quick_start]


    The project MUST make an effort to keep the documentation consistent with the current version of the project results (including software produced by the project). Any known documentation defects making it inconsistent MUST be fixed. If the documentation is generally current, but erroneously includes some older information that is no longer true, just treat that as a defect, then track and fix as usual. [documentation_current]

    Documentation is kept in the same repository as the code. The documentation is rebuilt on every commit and immediately live on https://horizon.adelielinux.org/.



    The project repository front page and/or website MUST identify and hyperlink to any achievements, including this best practices badge, within 48 hours of public recognition that the achievement has been attained. (URL required) [documentation_achievements]

    Our README ( https://code.foxkit.us/adelie/horizon/blob/master/README.rst ) contains all of our earned badges.


  • Accessibility and internationalization


    The project (both project sites and project results) SHOULD follow accessibility best practices so that persons with disabilities can still participate in the project and use the project results where it is reasonable to do so. [accessibility_best_practices]


    The software produced by the project SHOULD be internationalized to enable easy localization for the target audience's culture, region, or language. If internationalization (i18n) does not apply (e.g., the software doesn't generate text intended for end-users and doesn't sort human-readable text), select "not applicable" (N/A). [internationalization]

    The Horizon UI is written in Qt 5. Translation support is enabled for all user-facing strings.


  • Other


    If the project sites (website, repository, and download URLs) store passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). If the project sites do not store passwords for this purpose, select "not applicable" (N/A). [sites_password_security]

    The Web site and repository are run on a self-hosted GitLab with proper access controls in place.


  • Previous versions


    The project MUST maintain the most often used older versions of the product or provide an upgrade path to newer versions. If the upgrade path is difficult, the project MUST document how to perform the upgrade (e.g., the interfaces that have changed and detailed suggested steps to help upgrade). [maintenance_or_update]

    We have not yet released a second version of Horizon.


  • Bug-reporting process


    The project MUST use an issue tracker for tracking individual issues. [report_tracker]
  • Vulnerability report process


    The project MUST give credit to the reporter(s) of all vulnerability reports resolved in the last 12 months, except for the reporter(s) who request anonymity. If there have been no vulnerabilities resolved in the last 12 months, select "not applicable" (N/A). (URL required) [vulnerability_report_credit]

    No vulnerabilities have ever been reported for Project Horizon.



    The project MUST have a documented process for responding to vulnerability reports. (URL required) [vulnerability_response_process]

  • Coding standards


    The project MUST identify the specific coding style guides for the primary languages it uses, and require that contributions generally comply with it. (URL required) [coding_standards]

    The project MUST automatically enforce its selected coding style(s) if there is at least one FLOSS tool that can do so in the selected language(s). [coding_standards_enforced]

  • Working build system


    Build systems for native binaries MUST honor the relevant compiler and linker (environment) variables passed in to them (e.g., CC, CFLAGS, CXX, CXXFLAGS, and LDFLAGS) and pass them to compiler and linker invocations. A build system MAY extend them with additional flags; it MUST NOT simply replace provided values with its own. If no native binaries are being generated, select "not applicable" (N/A). [build_standard_variables]

    Horizon is built with standard CMake. These variables are tested regularly via our Clang scan-build tests.



    The build and installation system SHOULD preserve debugging information if they are requested in the relevant flags (e.g., "install -s" is not used). If there is no build or installation system (e.g., typical JavaScript libraries), select "not applicable" (N/A). [build_preserve_debug]

    CMake has Debug and RelWithDebugInfo build types to preserve debugging information.



    The build system for the software produced by the project MUST NOT recursively build subdirectories if there are cross-dependencies in the subdirectories. If there is no build or installation system (e.g., typical JavaScript libraries), select "not applicable" (N/A). [build_non_recursive]

    CMake generates the Makefiles (or Ninja build files, or others), keeping them updated as the structure of the project changes.



    The project MUST be able to repeat the process of generating information from source files and get exactly the same bit-for-bit result. If no building occurs (e.g., scripting languages where the source code is used directly instead of being compiled), select "not applicable" (N/A). [build_repeatable]

  • Installation system


    The project MUST provide a way to easily install and uninstall the software produced by the project using a commonly-used convention. [installation_common]

    The system is an installation system. CMake-generated Makefiles do support DESTDIR.



    The installation system for end-users MUST honor standard conventions for selecting the location where built artifacts are written to at installation time. For example, if it installs files on a POSIX system it MUST honor the DESTDIR environment variable. If there is no installation system or no standard convention, select "not applicable" (N/A). [installation_standard_variables]

    The system is an installation system. CMake-generated Makefiles do support DESTDIR.



    The project MUST provide a way for potential developers to quickly install all the project results and support environment necessary to make changes, including the tests and test environment. This MUST be performed with a commonly-used convention. [installation_development_quick]

    The Runtime Environment requires no external dependencies. Since the Installation Environment is only meant to be used from Adélie Linux, it is assumed that abuild deps from the Horizon build recipe in our packages repository is sufficient for this, as it will install all the build dependencies for the Horizon Installation Environment.


  • Externally-maintained components


    The project MUST list external dependencies in a computer-processable way. (URL required) [external_dependencies]

    On systems that support C++17, there are no external dependencies for the Runtime Environment.

    The Installation Environment dependencies are listed in the CMakeLists.txt file: https://code.foxkit.us/adelie/horizon/blob/master/CMakeLists.txt#L56 using standard PkgConfig files.



    Projects MUST monitor or periodically check their external dependencies (including convenience copies) to detect known vulnerabilities, and fix exploitable vulnerabilities or verify them as unexploitable. [dependency_monitoring]


    The project MUST either:
    1. make it easy to identify and update reused externally-maintained components; or
    2. use the standard components provided by the system or programming language.
    Then, if a vulnerability is found in a reused component, it will be easy to update that component. [updateable_reused_components]

    All external dependencies except CLIPP are provided by the system. No other vendored code exists.



    The project SHOULD avoid using deprecated or obsolete functions and APIs where FLOSS alternatives are available in the set of technology it uses (its "technology stack") and to a supermajority of the users the project supports (so that users have ready access to the alternative). [interfaces_current]

    All APIs used in the Installation Environment are current and non-deprecated. All APIs used in the Runtime Environment are part of C++14 and are not known to be obsolete or impending deprecation.


  • Automated test suite


    An automated test suite MUST be applied on each check-in to a shared repository for at least one branch. This test suite MUST produce a report on test success or failure. [automated_integration_testing]

    Test suite is run on every commit: https://code.foxkit.us/adelie/horizon/pipelines



    The project MUST add regression tests to an automated test suite for at least 50% of the bugs fixed within the last six months. [regression_tests_added50]

    No bugs have been filed yet. Regression tests are recommended in the contribution guide: https://code.foxkit.us/adelie/horizon/blob/master/CONTRIBUTING.rst



    The project MUST have FLOSS automated test suite(s) that provide at least 80% statement coverage if there is at least one FLOSS tool that can measure this criterion in the selected language. [test_statement_coverage80]

    We use LCOV ( http://ltp.sourceforge.net/coverage/lcov.php ) for coverage reports. At the time of this writing, we have 83% coverage: https://horizon.adelielinux.org/coverage/


  • New functionality testing


    The project MUST have a formal written policy that as major new functionality is added, tests for the new functionality MUST be added to an automated test suite. [test_policy_mandated]

    This is contained in our Contribution Guide: https://code.foxkit.us/adelie/horizon/blob/master/CONTRIBUTING.rst



    The project MUST include, in its documented instructions for change proposals, the policy that tests are to be added for major new functionality. [tests_documented_added]
  • Warning flags


    Projects MUST be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

    -Wall -Wextra with only -Wunused-parameter disabled: https://code.foxkit.us/adelie/horizon/blob/master/CMakeLists.txt#L17


  • Secure development knowledge


    The project MUST implement secure design principles (from "know_secure_design"), where applicable. If the project is not producing software, select "not applicable" (N/A). [implement_secure_design]

  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The default security mechanisms within the software produced by the project MUST NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]


    The project SHOULD support multiple cryptographic algorithms, so users can quickly switch if one is broken. Common symmetric key algorithms include AES, Twofish, and Serpent. Common cryptographic hash algorithm alternatives include SHA-2 (including SHA-224, SHA-256, SHA-384 AND SHA-512) and SHA-3. [crypto_algorithm_agility]

    cURL is used to connect to HTTPS, so it is up to the distributor of the cURL library to ensure this is met. The Adélie Linux build utilises OpenSSL and is fully configurable in this manner.



    The project MUST support storing authentication credentials (such as passwords and dynamic tokens) and private cryptographic keys in files that are separate from other information (such as configuration files, databases, and logs), and permit users to update and replace them without code recompilation. If the project never processes authentication credentials and private cryptographic keys, select "not applicable" (N/A). [crypto_credential_agility]

    While account passwords must be included in the HorizonScript, LUKS passphrases do not have to be - the user can be prompted for them instead.



    The software produced by the project SHOULD support secure protocols for all of its network communications, such as SSHv2 or later, TLS1.2 or later (HTTPS), IPsec, SFTP, and SNMPv3. Insecure protocols such as FTP, HTTP, telnet, SSLv3 or earlier, and SSHv1 SHOULD be disabled by default, and only enabled if the user specifically configures it. If the software produced by the project does not support network communications, select "not applicable" (N/A). [crypto_used_network]

    Signing keys are only fetchable via HTTPS. Repositories, user avatars, and HorizonScript files prefer HTTPS but support HTTP if the user explicitly requests them.



    The software produced by the project SHOULD, if it supports or uses TLS, support at least TLS version 1.2. Note that the predecessor of TLS was called SSL. If the software does not use TLS, select "not applicable" (N/A). [crypto_tls12]

    TLS 1.2 should be supported by any cURL build with TLS support that would be used with Horizon.



    The software produced by the project MUST, if it supports TLS, perform TLS certificate verification by default when using TLS, including on subresources. If the software does not use TLS, select "not applicable" (N/A). [crypto_certificate_verification]

    ibcurl performs peer SSL certificate verification by default: https://curl.haxx.se/docs/sslcerts.html



    The software produced by the project MUST, if it supports TLS, perform certificate verification before sending HTTP headers with private information (such as secure cookies). If the software does not use TLS, select "not applicable" (N/A). [crypto_verification_private]

    Certificate verification is performed during negotiation, before any HTTP headers are sent to the remote system.


  • Secure release


    The project MUST cryptographically sign releases of the project results intended for widespread use, and there MUST be a documented process explaining to users how they can obtain the public signing keys and verify the signature(s). The private key for these signature(s) MUST NOT be on site(s) used to directly distribute the software to the public. If releases are not intended for widespread use, select "not applicable" (N/A). [signed_releases]

    Git tags are cryptographically signed. Release tarballs have GPG signatures from our development team. See https://code.foxkit.us/adelie/horizon/-/releases for example.



    It is SUGGESTED that in the version control system, each important version tag (a tag that is part of a major release, minor release, or fixes publicly noted vulnerabilities) be cryptographically signed and verifiable as described in signed_releases. [version_tags_signed]

    All Git tags are cryptographically signed: https://code.foxkit.us/adelie/horizon/-/tags


  • Other security issues


    The project results MUST check all inputs from potentially untrusted sources to ensure they are valid (an *allowlist*), and reject invalid inputs, if there are any restrictions on the data at all. [input_validation]

    Horizon's parser is strict and heavily tested. We have achieved 100% test coverage in the parsing module. All inputs are fully sanitised and errors are returned if the values are not within parameters.



    Hardening mechanisms SHOULD be used in the software produced by the project so that software defects are less likely to result in security vulnerabilities. [hardening]

    Stack protector is on by default in Adélie Linux. We additionally have many warning flags enabled and marked -Werror.



    The project MUST provide an assurance case that justifies why its security requirements are met. The assurance case MUST include: a description of the threat model, clear identification of trust boundaries, an argument that secure design principles have been applied, and an argument that common implementation security weaknesses have been countered. (URL required) [assurance_case]

  • Static code analysis


    The project MUST use at least one static analysis tool with rules or approaches to look for common vulnerabilities in the analyzed language or environment, if there is at least one FLOSS tool that can implement this criterion in the selected language. [static_analysis_common_vulnerabilities]

    CppCheck includes checks to ensure proper API usage. It additionally ensures non-usage of known unsafe APIs (like gets).


  • Dynamic code analysis


    If the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) MUST be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]

    Valgrind is run per-commit as part of CI: https://code.foxkit.us/adelie/horizon/pipelines



This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit A. Wilcox and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: A. Wilcox.
Entry created on 2019-10-29 17:34:06 UTC, last updated on 2019-11-08 22:43:21 UTC.

Back