Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

There is no set of practices that can guarantee that software will never have defects or vulnerabilities; even formal methods can fail if the specifications or assumptions are wrong. Nor is there any set of practices that can guarantee that a project will sustain a healthy and well-functioning development community. However, following best practices can help improve the results of projects. For example, some practices enable multi-person review before release, which can both help find otherwise hard-to-find technical vulnerabilities and help build trust and a desire for repeated interaction among developers from different companies. To earn a badge, all MUST and MUST NOT criteria must be met, all SHOULD criteria must be met OR be unmet with justification, and all SUGGESTED criteria must be met OR unmet (we want them considered at least). If you want to enter justification text as a generic comment, instead of being a rationale that the situation is acceptable, start the text block with '//' followed by a space. Feedback is welcome via the GitHub site as issues or pull requests There is also a mailing list for general discussion.

We gladly provide the information in several locales, however, if there is any conflict or inconsistency between the translations, the English version is the authoritative version.
If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 137 is in_progress Here is how to embed it:
You can show your badge status by embedding this in your markdown file:
[![OpenSSF Best Practices](](
or by embedding this in your HTML:
<a href=""><img src=""></a>

These are the Passing level criteria. You can also view the Silver or Gold level criteria.

 Basics 13/13

  • Identification

    Note that other projects may use the same name.

    ESAPI (The OWASP Enterprise Security API) is a free, open source, web application security control library that makes it easier for programmers to write lower-risk applications.

    What programming language(s) are used to implement the project?
    If there is more than one language, list them as comma-separated values (spaces optional) and sort them from most to least used. If there is a long list, please list at least the first three most common ones. If there is no language (e.g., this is a documentation-only or test-only project), use the single character "-". Please use a conventional capitalization for each language, e.g., "JavaScript".
    The Common Platform Enumeration (CPE) is a structured naming scheme for information technology systems, software, and packages. It is used in a number of systems and databases when reporting vulnerabilities.
  • Basic project website content

    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]
    This MUST be in language that potential users can understand (e.g., it uses minimal jargon).

    The project website MUST provide information on how to: obtain, provide feedback (as bug reports or enhancements), and contribute to the software. [interact], specifically in the which is displayed on that page.

    Habari juu ya jinsi ya kuchangia LAZIMA ieleze mchakato wa uchangiaji (kwa mfano, je! Maombi ya kuvuta yanatumika?) (URL required) [contribution]
    Tunafikiria kuwa miradi kwenye GitHub hutumia maswala na kuvuta maombi isipokuwa palipoonyeshwa vingine. Habari hii inaweza kuwa fupi, kwa mfano, ikisema kuwa mradi hutumia maombi ya kuvuta, msako wa suala, au machapisho kwenye orodha ya barua (ipi?)

    Projects on GitHub by default use issues and pull requests, as encouraged by documentation such as

    Habari juu ya jinsi ya kuchangia INAPASWA kujumuisha mahitaji ya michango inayokubalika (k.m., rejeleo la kiwango chochote kinachohitajika cha usimbaji). (URL required) [contribution_requirements]

    See "How can I contribute or help with bug fixes?" section of

  • FLOSS license

    What license(s) is the project released under?
    Please use SPDX license expression format; examples include "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "GPL-2.0+", "LGPL-3.0+", "MIT", and "(BSD-2-Clause OR Ruby)". Do not include single quotes or double quotes.

    The software produced by the project MUST be released as FLOSS. [floss_license]
    FLOSS is software released in a way that meets the Open Source Definition or Free Software Definition. Examples of such licenses include the CC0, MIT, BSD 2-clause, BSD 3-clause revised, Apache 2.0, Lesser GNU General Public License (LGPL), and the GNU General Public License (GPL). For our purposes, this means that the license MUST be: The software MAY also be licensed other ways (e.g., "GPLv2 or proprietary" is acceptable).

    The BSD-3-Clause license is approved by the Open Source Initiative (OSI).

    Note that documentation is released under Creative Commons BY-SA licenses (2.0, 3.0, and 4.0, depending on when authored). The BSD-3-Clause license is approved by the Open Source Initiative (OSI).

    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]
    The OSI uses a rigorous approval process to determine which licenses are OSS.

    The BSD-3-Clause license is approved by the Open Source Initiative (OSI).

    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]
    One convention is posting the license as a top-level file named LICENSE or COPYING, which MAY be followed by an extension such as ".txt" or ".md". An alternative convention is to have a directory named LICENSES containing license file(s); these files are typically named as their SPDX license identifier followed by an appropriate file extension, as described in the REUSE Specification. Note that this criterion is only a requirement on the source repository. You do NOT need to include the license file when generating something from the source code (such as an executable, package, or container). For example, when generating an R package for the Comprehensive R Archive Network (CRAN), follow standard CRAN practice: if the license is a standard license, use the standard short license specification (to avoid installing yet another copy of the text) and list the LICENSE file in an exclusion file such as .Rbuildignore. Similarly, when creating a Debian package, you may put a link in the copyright file to the license text in /usr/share/common-licenses, and exclude the license file from the created package (e.g., by deleting the file after calling dh_auto_install). We encourage including machine-readable license information in generated formats where practical.
  • Documentation

    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]
    This documentation must be in some media (such as text or video) that includes: how to install it, how to start it, how to use it (possibly with a tutorial using examples), and how to use it securely (e.g., what to do and what not to do) if that is an appropriate topic for the software. The security documentation need not be long. The project MAY use hypertext links to non-project material as documentation. If the project does not produce software, choose "not applicable" (N/A).

    Most of the documentation on ESAPI may be found under Since ESAPI is a widely used Java API, the latest Javadoc (which is the low-level documentation for its use) is available at Additional ESAPI documentation (e..g,, the ESAPI-AppSensor integration) is referenced off the main ESAPI page on the OWASP wiki site.

    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]
    The documentation of an external interface explains to an end-user or developer how to use it. This would include its application program interface (API) if the software has one. If it is a library, document the major classes/types and methods/functions that can be called. If it is a web application, define its URL interface (often its REST interface). If it is a command-line interface, document the parameters and options it supports. In many cases it's best if most of this documentation is automatically generated, so that this documentation stays synchronized with the software as it changes, but this isn't required. The project MAY use hypertext links to non-project material as documentation. Documentation MAY be automatically generated (where practical this is often the best way to do so). Documentation of a REST interface may be generated using Swagger/OpenAPI. Code interface documentation MAY be generated using tools such as JSDoc (JavaScript), ESDoc (JavaScript), pydoc (Python), devtools (R), pkgdown (R), and Doxygen (many). Merely having comments in implementation code is not sufficient to satisfy this criterion; there needs to be an easy way to see the information without reading through all the source code. If the project does not produce software, choose "not applicable" (N/A).

    The low-level API documentation for ESAPI is available at

  • Other

    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]
    This requires that the project home page URL and the version control repository URL begin with "https:", not "http:". You can get free certificates from Let's Encrypt. Projects MAY implement this criterion using (for example) GitHub pages, GitLab pages, or SourceForge project pages. If you support HTTP, we urge you to redirect the HTTP traffic to HTTPS.

    Given only https: URLs.

    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]
    Examples of acceptable mechanisms include archived mailing list(s), GitHub issue and pull request discussions, Bugzilla, Mantis, and Trac. Asynchronous discussion mechanisms (like IRC) are acceptable if they meet these criteria; make sure there is a URL-addressable archiving mechanism. Proprietary JavaScript, while discouraged, is permitted.

    GitHub supports discussions on issues and pull requests. As of 2022-05-10, we also added a GitHub Discussions board.

    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]
    English is currently the lingua franca of computer technology; supporting English increases the number of different potential developers and reviewers worldwide. A project can meet this criterion even if its core developers' primary language is not English.

    The file, displayed on the main GitHub page at describes all of this.

    The project MUST be maintained. [maintained]
    As a minimum, the project should attempt to respond to significant problem and vulnerability reports. A project that is actively pursuing a badge is probably maintained. All projects and people have limited resources, and typical projects must reject some proposed changes, so limited resources and proposal rejections do not by themselves indicate an unmaintained project.

    When a project knows that it will no longer be maintained, it should set this criterion to "Unmet" and use the appropriate mechanism(s) to indicate to others that it is not being maintained. For example, use “DEPRECATED” as the first heading of its README, add “DEPRECATED” near the beginning of its home page, add “DEPRECATED” to the beginning of its code repository project description, add a no-maintenance-intended badge in its README and/or home page, mark it as deprecated in any package repositories (e.g., npm deprecate), and/or use the code repository's marking system to archive it (e.g., GitHub's "archive" setting, GitLab’s "archived" marking, Gerrit's "readonly" status, or SourceForge’s "abandoned" project status). Additional discussion can be found here.

(Advanced) What other users have additional rights to edit this badge entry? Currently: []
Most projects should ignore this field. Project badge entries can always be edited by the badge entry owner (creator), BadgeApp administrators, and anyone who can commit to the GitHub repository (if it's on GitHub). If you want someone else to be able to edit this badge entry, and you already have edit rights to this project badge entry, you can additional users with edit rights. Just enter "+" followed by a comma-separated list of integer user ids. Those users will then also be allowed to edit this project entry. If you're the owner of the badge entry or a BadgeApp administrator, you can remove users from this list by entering "-" followed by a comma-separated list of integer user ids. We expect that normally only one person will edit a particular badge entry at a time. This application uses optimistic locking to prevent saving stale data if multiple users try to edit a badge entry simultaneously. If you have multiple editors, we recommend saving badge entry data incrementally and often (that is a wise practice anyway).

We have a lot of documentation, but 1) much of it is outdated, 2) much of it is disorganized and/or hard to find, and 3) a lot of it is not the "right" documentation to serve the intended audience (e.g., I'm thinking of developer user guides here in the "how to use sense").

 Change Control 9/9

  • Public version-controlled source repository

    The project MUST have a version-controlled source repository that is publicly readable and has a URL. [repo_public]
    The URL MAY be the same as the project URL. The project MAY use private (non-public) branches in specific cases while the change is not publicly released (e.g., for fixing a vulnerability before it is revealed to the public).

    Repository on GitHub, which provides public git repositories with URLs. See for details.

    The project's source repository MUST track what changes were made, who made the changes, and when the changes were made. [repo_track]

    Repository on GitHub, which uses git. git can track the changes, who made them, and when they were made.

    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]
    Projects MAY choose to omit specific interim versions from their public source repositories (e.g., ones that fix specific non-public security vulnerabilities, may never be publicly released, or include material that cannot be legally posted and are not in the final release).

    On-going development and bug-fixes are made on the (default) 'develop' branch. The latest official release is available on the 'master' branch. We also have tagged releases based on release # and have branches corresponding to each release #.

    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]
    Git is not specifically required and projects can use centralized version control software (such as subversion) with justification.

    Repository on GitHub, which uses git. git is distributed.

  • Unique version numbering

    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]
    This MAY be met in a variety of ways including a commit IDs (such as git commit id or mercurial changeset id) or a version number (including version numbers that use semantic versioning or date-based schemes like YYYYMMDD).

    Release #s are updated according to semantic versioning format for each release. The latest (possibly unstable) release is available from the (default) 'develop' branch. The latest previous official release is available from the 'master' branch.

    It is SUGGESTED that the Semantic Versioning (SemVer) or Calendar Versioning (CalVer) version numbering format be used for releases. It is SUGGESTED that those who use CalVer include a micro level value. [version_semver]
    Projects should generally prefer whatever format is expected by their users, e.g., because it is the normal format used by their ecosystem. Many ecosystems prefer SemVer, and SemVer is generally preferred for application programmer interfaces (APIs) and software development kits (SDKs). CalVer tends to be used by projects that are large, have an unusually large number of independently-developed dependencies, have a constantly-changing scope, or are time-sensitive. It is SUGGESTED that those who use CalVer include a micro level value, because including a micro level supports simultaneously-maintained branches whenever that becomes necessary. Other version numbering formats may be used as version numbers, including git commit IDs or mercurial changeset IDs, as long as they uniquely identify versions. However, some alternatives (such as git commit IDs) can cause problems as release identifiers, because users may not be able to easily determine if they are up-to-date. The version ID format may be unimportant for identifying software releases if all recipients only run the latest version (e.g., it is the code for a single website or internet service that is constantly updated via continuous delivery).

    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]

    Done with git tags. Also each tag corresponding to an official release has a corresponding Git branch.

  • Release notes

    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]
    The release notes MAY be implemented in a variety of ways. Many projects provide them in a file named "NEWS", "CHANGELOG", or "ChangeLog", optionally with extensions such as ".txt", ".md", or ".html". Historically the term "change log" meant a log of every change, but to meet these criteria what is needed is a human-readable summary. The release notes MAY instead be provided by version control system mechanisms such as the GitHub Releases workflow.

    The changelog is usually incorporated into the release notes. For the latest release notes, see

    The release notes MUST identify every publicly known run-time vulnerability fixed in this release that already had a CVE assignment or similar when the release was created. This criterion may be marked as not applicable (N/A) if users typically cannot practically update the software themselves (e.g., as is often true for kernel updates). This criterion applies only to the project results, not to its dependencies. If there are no release notes or there have been no publicly known vulnerabilities, choose N/A. [release_notes_vulns]
    This criterion helps users determine if a given update will fix a vulnerability that is publicly known, to help users make an informed decision about updating. If users typically cannot practically update the software themselves on their computers, but must instead depend on one or more intermediaries to perform the update (as is often the case for a kernel and low-level software that is intertwined with a kernel), the project may choose "not applicable" (N/A) instead, since this additional information will not be helpful to those users. Similarly, a project may choose N/A if all recipients only run the latest version (e.g., it is the code for a single website or internet service that is constantly updated via continuous delivery). This criterion only applies to the project results, not its dependencies. Listing the vulnerabilities of all transitive dependencies of a project becomes unwieldy as dependencies increase and vary, and is unnecessary since tools that examine and track dependencies can do this in a more scalable way.

    There was some dispute over whether or not was considered a vulnerability or not. We did not seek getting a CVE for this because it was the same type of Java deserialization issue as was Apache Commons COLLECTIONS-580 bug, which Mitre supposed refused to issue a CVE for. (Not to mention that getting a CVE is a royal PITA!) We did announce this one the 2 ESAPI public mailing lists shortly after I created the GitHub issue for it. That code was closed on 2016-01-19 by removing the vulnerable method as I decided it was too dangerous to leave in only a deprecated state for 2 whole years (as per our normal deprecation policy). Other vulnerabilities, are discussed in detail in published security bulletins and summarized in, which is referenced from our project README file.

 Reporting 8/8

  • Bug-reporting process

    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    GitHub issues: is the preferred way, but we have had users announce bugs on the mailing lists. In those cases, one of the ESAPI contributors will turn those into a GitHub issue. There are plans to integrate with an instance of Atlassian's JIRA, but the synchronization of that with GitHub failed and so we are back to using GitHub Issues alone at the moment.

    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]

    ESAPI contributors get email and can respond directly via there or via GitHub. Note that we may have some bugs from the very early days that contributors created that were not formally acknowledged. Generally those were ones that one contributor asked another contributor via email to file a bug report using Google Code (which we were using back then). However, since moving things to GitHub and getting a few additional contributors, we have been doing better.

    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]
    The response MAY be 'no' or a discussion about its merits. The goal is simply that there be some response to some requests, which indicates that the project is still alive. For purposes of this criterion, projects need not count fake requests (e.g., from spammers or automated systems). If a project is no longer making enhancements, please select "unmet" and include the URL that makes this situation clear to users. If a project tends to be overwhelmed by the number of enhancement requests, please select "unmet" and explain.

    Same way as previous question.

    The project MUST have a publicly available archive for reports and responses for later searching. (URL required) [report_archive]

    GitHub issues ( are searchable. In addition, the two ESAPI mailing lists are archived and searchable as well. And as of 2022-05-10, we now support a GitHub Discussions board at

  • Vulnerability report process

    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]
    Projects hosted on GitHub SHOULD consider enabling privately reporting a security vulnerability. Projects on GitLab SHOULD consider using its ability for privately reporting a vulnerability. Projects MAY identify a mailing address on https://PROJECTSITE/security, often in the form This vulnerability reporting process MAY be the same as its bug reporting process. Vulnerability reports MAY always be public, but many projects have a private vulnerability reporting mechanism.

    The process for reporting vulnerabilities is now described in the file which is displayed on the main GitHub page at The ESAPI security vulnerability reporting process is also described at

    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]
    Examples include a private defect report submitted on the web using HTTPS (TLS) or an email encrypted using OpenPGP. If vulnerability reports are always public (so there are never private vulnerability reports), choose "not applicable" (N/A).

    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]
    If there have been no vulnerabilities reported in the last 6 months, choose "not applicable" (N/A).

    Met. Some details may be found at Technically, I guess we didn't "respond" to the one at, but that's because Kevin Wall (one of the ESAPI project co-leads) reported it himself.

 Quality 12/13

  • Working build system

    Ikiwa programu iliyotengenezwa na mradi inahitaji ujenzi wa matumizi, mradi LAZIMA utoe mfumo wa kujenga ambao unaweza kujenga programu kiotomatiki kutoka kwa chanzo-msimbo. [build]
    Mfumo wa kujenga huamua ni hatua gani zinahitaji kutendeka ili kujenga tena programu (na kwa mpangilio gani), na kisha kutekeleza hatua hizo. Kwa mfano, inaweza kuomba kikusanyaji kukusanya fumbo-chanzo. Ikiwa inayoweza kutekelezwa imeundwa kutoka kwa fumbo-chanzo, lazima iwezeshe marekebisho kwenye fumbo-chanzo ya mradi na kisha itengeneze msasisho inayoweza kutekelezwa na marekebisho hayo. Ikiwa programu iliyotolewa na mradi unategemea maktaba ya nje, mfumo wa kujenga haina haja ya kujenga maktaba hizo za nje. Ikiwa hakuna haja ya kujenga chochote kutumia programu baada ya fumbo-chanzo kubadilishwa, chagua "haitumiki" (N / A).

    Non-trivial build file in repository: Starting with ESAPI, we now also distribute ESAPI with a CycloneDX SBOM file that is uploaded to Maven Central.

    INAPENDEKEZWA kuwa zana za kawaida zitumike kujenga programu. [build_common_tools]
    Kwa mfano, Maven, Ant, cmake, autotools, make, rake (Ruby), au devtools (R).

    Non-trivial build file in repository: All tools required to build the software are available under FLOSS licenses. Only Maven 3.3.9 or later and Java 8 or later (we use OpenJDK, but any version should work) is be needed to build ESAPI and run the JUnit tests. (Maven will pull in the rest of the dependencies.)

    Mradi UNAPASWA kujengwa kwa kutumia zana za FLOSS pekee yake. [build_floss_tools]

    OpenJDK, Maven, JUnit, and various FLOSS 3rd party Java libraries such as various Apache Commons libraries, etc.

  • Automated test suite

    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). The project MUST clearly show or document how to run the test suite(s) (e.g., via a continuous integration (CI) script or via documentation in files such as,, or [test]
    The project MAY use multiple automated test suites (e.g., one that runs quickly, vs. another that is more thorough but requires special equipment). There are many test frameworks and test support systems available, including Selenium (web browser automation), Junit (JVM, Java), RUnit (R), testthat (R).

    As of release, there are now 4274 JUnit tests in 131 Java source files (with 0 tests skipped)'mvn test' and all tests passing. There is also a GitHub CI/CD workflow that executes 'mvn -B package --file pom.xml' every time a git PR is created.

    A test suite SHOULD be invocable in a standard way for that language. [test_invocation]
    For example, "make check", "mvn test", or "rake test" (Ruby).

    mvn test

    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]

    70% code coverage as measured by (under

    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]
  • New functionality testing

    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]
    As long as a policy is in place, even by word of mouth, that says developers should add tests to the automated test suite for major new functionality, select "Met."

    The project (unfortunately) has a small enough # of contributors on the team that this is well understood. That said, no new major functionality is intended for esapi-java-legacy (i.e., ESAPI 2.x releases). Any new functionality will be done under ESAPI 3.0 ( that is a project that will not [or, at least very unlikely] be backward compatible with ESAPI 2.x releases. However, we believe this is also applicable to bug fixes as well and as such, have updated Step 4 in the CONTRIBUTING-TO-ESAPI.txt file to mention adding JUnit tests to confirm fixes.

    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]
    Major functionality would typically be mentioned in the release notes. Perfection is not required, merely evidence that tests are typically being added in practice to the automated test suite when new major functionality is added to the software produced by the project.

    Really, not applicable as no new functionality is planned / intended. See above question for details. (Seriously, I'm having enough trouble just getting enough people to address bug fixes.)

    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]
    However, even an informal rule is acceptable as long as the tests are being added in practice.

    Again, N/A. See the two previous questions.

  • Warning flags

    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]
    Examples of compiler warning flags include gcc/clang "-Wall". Examples of a "safe" language mode include JavaScript "use strict" and perl5's "use warnings". A separate "linter" tool is simply a tool that examines the source code to look for code quality errors or common simple mistakes. These are typically enabled within the source code or build instructions.

    The next official ESAPI major release will include '-Xlint:all' in the pom.xml. Since the latest release (, we have been using '-Xlint:all,-deprecation,-rawtypes,-unchecked'.

    The project MUST address warnings. [warnings_fixed]
    These are the warnings identified by the implementation of the warnings criterion. The project should fix warnings or mark them in the source code as false positives. Ideally there would be no warnings, but a project MAY accept some warnings (typically less than 1 warning per 100 lines or less than 10 warnings).

    Addressed with the exceptions of the warnings that are currently (deliberately) ignored; see previous question. This is being addressed now, but we currently do not have it ALL.

    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]
    Some warnings cannot be effectively enabled on some projects. What is needed is evidence that the project is striving to enable warning flags where it can, so that errors are detected early.

    Toying with the idea of also adding '-Werror' to terminate compilation if there are any ideas, but need to bounce that idea off the other contributors first before deciding on anything definitive.

 Security 16/16

  • Secure development knowledge

    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]
    This requires understanding the following design principles, including the 8 principles from Saltzer and Schroeder:
    • economy of mechanism (keep the design as simple and small as practical, e.g., by adopting sweeping simplifications)
    • fail-safe defaults (access decisions should deny by default, and projects' installation should be secure by default)
    • complete mediation (every access that might be limited must be checked for authority and be non-bypassable)
    • open design (security mechanisms should not depend on attacker ignorance of its design, but instead on more easily protected and changed information like keys and passwords)
    • separation of privilege (ideally, access to important objects should depend on more than one condition, so that defeating one protection system won't enable complete access. E.G., multi-factor authentication, such as requiring both a password and a hardware token, is stronger than single-factor authentication)
    • least privilege (processes should operate with the least privilege necessary)
    • least common mechanism (the design should minimize the mechanisms common to more than one user and depended on by all users, e.g., directories for temporary files)
    • psychological acceptability (the human interface must be designed for ease of use - designing for "least astonishment" can help)
    • limited attack surface (the attack surface - the set of the different points where an attacker can try to enter or extract data - should be limited)
    • input validation with allowlists (inputs should typically be checked to determine if they are valid before they are accepted; this validation should use allowlists (which only accept known-good values), not denylists (which attempt to list known-bad values)).
    A "primary developer" in a project is anyone who is familiar with the project's code base, is comfortable making changes to it, and is acknowledged as such by most other participants in the project. A primary developer would typically make a number of contributions over the past year (via code, documentation, or answering questions). Developers would typically be considered primary developers if they initiated the project (and have not left the project more than three years ago), have the option of receiving information on a private vulnerability reporting channel (if there is one), can accept commits on behalf of the project, or perform final releases of the project software. If there is only one developer, that individual is the primary developer. Many books and courses are available to help you understand how to develop more secure software and discuss design. For example, the Secure Software Development Fundamentals course is a free set of three courses that explain how to develop more secure software (it's free if you audit it; for an extra fee you can earn a certificate to prove you learned the material).

    Both project co-leaders (Kevin W. Wall and Matt Seilt) are experienced professional appsec engineers who have been 10+ years of application security experience.

    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]
    Examples (depending on the type of software) include SQL injection, OS injection, classic buffer overflow, cross-site scripting, missing authentication, and missing authorization. See the CWE/SANS top 25 or OWASP Top 10 for commonly used lists. Many books and courses are available to help you understand how to develop more secure software and discuss common implementation errors that lead to vulnerabilities. For example, the Secure Software Development Fundamentals course is a free set of three courses that explain how to develop more secure software (it's free if you audit it; for an extra fee you can earn a certificate to prove you learned the material).

    ESAPI in fact is designed to address common appsec errors such as OT10. E.g., see slide 3 in

  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    Programu iliyotengenezwa na mradi LAZIMA itumie, kwa chaguo-msingi, tu itifaki za kriptografia na mifumbo ambazo zimechapishwa hadharani na kukaguliwa na wataalam (ikiwa itifaki za kriptografia na mafumbo imetumika). [crypto_published]
    Vigezo hivi vya kriptografia mara mingi havitumiki kwa sababu programu zingine hazina haja ya kutumia moja kwa moja uwezo wa kriptografia.

    By DEFAULT, only AES is enabled. Users however, could in principle, add whatever stupid symmetric encryption algorithm is supported by some JVE implementation, like SuperRoysSecretSnakeOilCryptoSauce that requires a 1M bit key and implements a pseudo-one time pad. Let's face it, there is no patch for stupidity. It's open source, so if we tried to white-list algorithms, people could just rewrite that part of the source code and recompile.

    Ikiwa programu iliyotengenezwa na mradi ni programu au maktaba, na kusudi lake la msingi sio kutekeleza usimbuaji, basi INAPASWA tu kuita programu iliyoundwa kihususa kutekeleza kazi za kielelezo; HAIPASWI kutekeleza-upya shughuli hiyo. [crypto_call]

    We rely on JCE implementations, such as SunJCE or BouncyCastle, etc. We provide more user friendly wrappers around the JCE crypto so that people don't have to understand what cipher modes and IVs and padding schemes are all about. We also provide an encrypt-then-MAC approach to CBC mode for earlier versions of JDK that don't support out-of-the-box authenticated encryption modes and for projects that are not permitted to use alternative FLOSS JCE implementations such as BouncyCastle.

    Utendaji wote katika programu iliyotengenezwa na mradi ambayo inategemea usimbuaji LAZIMA iweze kutekelezwa kwa kutumia FLOSS. [crypto_floss]

    SunJCE (available as part of OpenJDK) or BouncyCastle are both FLOSS JCE implementations.

    Mifumo ya usalama ndani ya programu inayozalishwa na mradi LAZIMA itumie kwa msingi keylengths ambazo angalau zinakidhi mahitaji ya chini ya NIST kufikia mwaka wa 2030 (kama ilivyoelezwa mnamo 2012). LAZIMA iwe rahisi kusanidi programu ili keylengths ndogo zimezimwa kabisa. [crypto_keylength]
    Vipimo hivi vya urefu wa charaza ni: symmetric key 112, factoring modulus 2048, discrete logarithm key 224, discrete logarithmic group 2048, elliptic curve 224, na hash 224 (ufichuzi wa nywila haujashughulikiwa kwenye urefu wa charaza hii, maelezo zaidi ya ufichuzi wa nywila yanapatikana ndani ya kigezo cha crypto_password_storage). Ona kwa mliganisho wa mapendekezo ya funguo-refu kutoka mashirika mbali mbali. Programu YAWEZA kubali funguo-refu ndogo katika usanidi (haifai kukubali, maana hii huwacha mashambulizi ya kushusha, lakini funguo-refu fupi wakati mwingine ina manufaa ya upatanifu).

    The default min key size is 128 bits for AES, or either 112 bit, 2-key TDES for DESede (or 3-key if the JCE Unlimited Strength Jurisdiction Polciy files are installed as part of the JRE.

    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]
    ECB mode is almost never appropriate because it reveals identical blocks within the ciphertext as demonstrated by the ECB penguin, and CTR mode is often inappropriate because it does not perform authentication and causes duplicates if the input state is repeated. In many cases it's best to choose a block cipher algorithm mode designed to combine secrecy and authentication, e.g., Galois/Counter Mode (GCM) and EAX. Projects MAY allow users to enable broken mechanisms (e.g., during configuration) where necessary for compatibility, but then users know they're doing it.

    Use SHA-256 by default for most hashing, but users can decide by tweaking properties in to use whatever MessageDigest or Mac that is available. (Again, we do not try to prevent stupidity this being open source, but we do try to make it intentional if you want to shoot off your own foot.)

    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]
    Concerns about CBC mode in SSH are discussed in CERT: SSH CBC vulnerability.

    We do use HMacSHA1, but according to Bellare, Canetti & Krawczyk (1996), this should still be secure as they showed that HMAC security doesn’t require that the underlying hash function be collision resistant, but only that it acts as a pseudo-random function. (Or at least that was my take away when I read it 10+ years ago. But if I'm wrong, please advise. We wanted an HMAC value that was short as possible, but HMAC-MD5 just didn't feel right.) We also use SecureRandom to generate random #s for things like IVs, etc. which ought to be okay even though it uses SHA1PRNG as its CSRNG.

    Mifumo ya usalama ndani ya programu iliyotengenezwa na mradi INAPASWA kutekeleza kwa ukamilifu usiri wa umbele ya itifaki za makubaliano ya funguo ili funguo la kipindi kilicho tokana na kikao cha vifungo muda-mrefu haziwezi kuridhi mabaya ikiwa mojawapo ya vifunguo vya muda-mrefu imeridhi mabaya katika usoni. [crypto_pfs]

    We currently do not do any sort of key-agreement. All symmetric encryption is assumed to use pre-shared keys, presumably shared out-of-band. This is something that is being considered for ESAPI 3.0 though.

    Ikiwa programu iliyotengenezwa na mradi imesababisha uhifadhi wa nywila kwa minajili ya uthibitishaji ya watumiaji wa kutoka nje, nywila LAZIMA zihifadhiwe kwa mficho uliorudiarudia na chumvi kwa kila-mtumiaji kwa kutumia kanuni ya upanuaji (rudiarudia) wa funguo (k.m., Argon2id, Bcrypt, Scrypt, or PBKDF2). Ona pia Kurasadogo ya Uhifadhi wa Nywila la OWASP). [crypto_password_storage]
    Kigezo hili linatumika tu wakati programu linatekeleza uthibitishaji wa watumiaji kutumia nywila kwa watumiaji wa nje (ambayo pia ni uthibitishaji unaelekezwa ndani), kama vile programu za tovuti zinazobakia seva). Haitumiki katika visa ambavyo programu inahifadhi nywila ili kudhibitisha ndani ya mifumo mingine (ambayo pia ni ithibitishaji unaelekezwa nje, k.m., programu inatekeleza teja la mfumo lingineyo), maana angalau sehemu za programu lazima ziwe na njia ya kupata hiyo nywila isigalifichwa.

    We don't store passwords per se, except temporally for unit testing (created by FileBasedAuthenticator) where they are hashed with per-user random salt.

    Mifumo ya usalama ndani ya programu iliyotengenezwa na mradi LAZIMA itoe funguo zote za kriptologia na nonces kwa kutumia kitengeneza cha nambari za bahati kuptia kriptologia salama, na ISIWEZE kufanya hivo kutumia vitengenezi zisizo salama kikriptologia. [crypto_random]
    A cryptographically secure random number generator may be a hardware random number generator, or it may be a cryptographically secure pseudo-random number generator (CSPRNG) using an algorithm such as Hash_DRBG, HMAC_DRBG, CTR_DRBG, Yarrow, or Fortuna. Examples of calls to secure random number generators include Java's and JavaScript's window.crypto.getRandomValues. Examples of calls to insecure random number generators include Java's java.util.Random and JavaScript's Math.random.

    We use an implementation of NIST SP 800-108 Key Derivation Function (which uses SHA-256 for it's CSPRNG under the hood.) Design and implementation details are available at:

  • Secured delivery against man-in-the-middle (MITM) attacks

    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]
    An even stronger mechanism is releasing the software with digitally signed packages, since that mitigates attacks on the distribution system, but this only works if the users can be confident that the public keys for signatures are correct and if the users will actually check the signature.

    We enforce either https: for all our ESAPI-related web sites or https or ssh from the git command line. Also, in several ESAPI classes, we ensure that the client is using https.

    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]
    These hashes can be modified in transit.

    ESAPI is downloaded from The jar is signed by my (Kevin Wall's) private key. My public key is available from the MIT key server should anyone actually wish to confirm it. (Yeah; right. Sigh.)

  • Publicly known vulnerabilities fixed

    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]
    The vulnerability must be patched and released by the project itself (patches may be developed elsewhere). A vulnerability becomes publicly known (for this purpose) once it has a CVE with publicly released non-paywalled information (reported, for example, in the National Vulnerability Database) or when the project has been informed and the information has been released to the public (possibly by the project). A vulnerability is considered medium or higher severity if its Common Vulnerability Scoring System (CVSS) base qualitative score is medium or higher. In CVSS versions 2.0 through 3.1, this is equivalent to a CVSS score of 4.0 or higher. Projects may use the CVSS score as published in a widely-used vulnerability database (such as the National Vulnerability Database) using the most-recent version of CVSS reported in that database. Projects may instead calculate the severity themselves using the latest version of CVSS at the time of the vulnerability disclosure, if the calculation inputs are publicly revealed once the vulnerability is publicly known. Note: this means that users might be left vulnerable to all attackers worldwide for up to 60 days. This criterion is often much easier to meet than what Google recommends in Rebooting responsible disclosure, because Google recommends that the 60-day period start when the project is notified even if the report is not public. Also note that this badge criterion, like other criteria, applies to the individual project. Some projects are part of larger umbrella organizations or larger projects, possibly in multiple layers, and many projects feed their results to other organizations and projects as part of a potentially-complex supply chain. An individual project often cannot control the rest, but an individual project can work to release a vulnerability patch in a timely way. Therefore, we focus solely on the individual project's response time. Once a patch is available from the individual project, others can determine how to deal with the patch (e.g., they can update to the newer version or they can apply just the patch as a cherry-picked solution).

    As of ESAPI, there are no now true positives identified as vulnerabilities in ESAPI. (As of the release, we completely removed the Log4J 1.2.17 dependency.) It only took us 2 years to remove it because that is our formal deprecation policy and it would have broken many client applications. (We also confirmed there were no exploitable CVEs related to Log4J in our standard configuration.)

    However, there are still occasional false positives flagged by various Software Compositional Analysis (SCA) tools / services (e.g., OWASP Dependency Check, BlackDuck, Verisign SourceClear, Snyk, Sonatype NexusIQ, etc.) that flag ESAPI as being vulnerable to some CVE or another. These are almost always in a transitive dependency. We thoroughly investigate these and either proceed to remediate them, or if they are false positives, explain the rationale as to why they are not exploitable in a security bulletin and then reference that in the file.

    CVE-2013-5960 is still unfixed even though NIST says that it was fixed (which is true for the default ESAPI configuration), but CVE-2013-5960 is actually a design flaw, not a coding bug, and I (the author) do not really believe that the core issue has been remediated even though I believe that NIST / MITRE got the CVSSv2 score wrong. (But what point is there disputing that since they think it is already closed.) But the reason it is not exploitable in the default configuration is that only Authenticated Encryption cipher modes (GCM, CCM, IAPM, EAX, OCB, and CWC) are offered in the default configuration and the only non-AE mode offered by default is CBC. The PoC exploit code exploit for CVE-2013-5960 required OFB mode to be added to the file as a non-AE cipher mode. One may be able to do that via social engineering, but that should reflect a lower CVSSv2 score.

    in that the CVSSv2 base score is 5.8 but I would contend that they did not take into account that one needs to convince the intended victim to first accept additional non-authenticated cipher modes and, place them in the file. Could happen, but that social engineering side was not taken into the equation.

    Note that correctly fixing CVE-2013-5960 requires a major redesign in the encrypt-then-MAC calculation. When I started looking at it more deeply, I realized there were additional things that should be MAC'd as well such as the version #, etc. (I since have become aware of Schneier & Ferguson's Horton Principle and am making design changes as a result.) Doing it securely in a manner that can be backward compatible is tough and it would be nice to have someone else with some applied cryptography knowledge since Jeffrey Walton is no longer contributing toward OWASP.

    However, I am marking this as 'met' because I think even if NIST had left this as open, had the adjusted it for the DEFAULT ESAPI configuration, the CVSSv2 score would have been LOW rather than MEDIUM.

    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

    You'll get no argument from me. But given that ESAPI all but died (see and, I'm happen that it's at least still crawling along. Any help is always appreciated!

  • Other security issues

    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]
    A project MAY leak "sample" credentials for testing and unimportant databases, as long as they are not intended to limit public access.

    We store no passwords or private keys on any public repositories. My private signing key is encrypted on my GPG keyring and that passphrase is stored in PasswordSafe on my personal laptop (and backed up!) and secured by a secure passphrase known only to me.

 Analysis 8/8

  • Static code analysis

    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]
    A static code analysis tool examines the software code (as source code, intermediate code, or executable) without executing it with specific inputs. For purposes of this criterion, compiler warnings and "safe" language modes do not count as static code analysis tools (these typically avoid deep analysis because speed is vital). Some static analysis tools focus on detecting generic defects, others focus on finding specific kinds of defects (such as vulnerabilities), and some do a combination. Examples of such static code analysis tools include cppcheck (C, C++), clang static analyzer (C, C++), SpotBugs (Java), FindBugs (Java) (including FindSecurityBugs), PMD (Java), Brakeman (Ruby on Rails), lintr (R), goodpractice (R), Coverity Quality Analyzer, SonarQube, Codacy, and HP Enterprise Fortify Static Code Analyzer. Larger lists of tools can be found in places such as the Wikipedia list of tools for static code analysis, OWASP information on static code analysis, NIST list of source code security analyzers, and Wheeler's list of static analysis tools. If there are no FLOSS static analysis tools available for the implementation language(s) used, you may select 'N/A'.

    I use FindSecurityBugs and PMD when I use Eclipse. Several of us also have a Coverity instance (e.g.,, and, which our Coverity badge will eventually be referring to).

    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]
    Static analysis tools that are specifically designed to look for common vulnerabilities are more likely to find them. That said, using any static tools will typically help find some problems, so we are suggesting but not requiring this for the 'passing' level badge.

    Coverity is being used. I have also ran it through HP Fortify a few times. It has been fully analyzed by the secure code review team where I work, and while I cannot provide details, no vulnerabilities were discovered. I did find 1 or 2 bugs [since reported] as a result of the Fortify scan though.

    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]
    A vulnerability is considered medium or higher severity if its Common Vulnerability Scoring System (CVSS) base qualitative score is medium or higher. In CVSS versions 2.0 through 3.1, this is equivalent to a CVSS score of 4.0 or higher. Projects may use the CVSS score as published in a widely-used vulnerability database (such as the National Vulnerability Database) using the most-recent version of CVSS reported in that database. Projects may instead calculate the severity themselves using the latest version of CVSS at the time of the vulnerability disclosure, if the calculation inputs are publicly revealed once the vulnerability is publicly known. Note that criterion vulnerabilities_fixed_60_days requires that all such vulnerabilities be fixed within 60 days of being made public.

    No medium or high severity vulnerabilities were discovered.

    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

    We regularly run PMD, spotbugs, and findsecbugs and review new findings. I believe that Bjorn Kimminich has integrated the Coverity scan with his Travis-CI builds, but it has been run since April 2016. I have run CodeQL recently, but it is not yet fully integrated into our GitHub workflow.

  • Dynamic code analysis

    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]
    A dynamic analysis tool examines the software by executing it with specific inputs. For example, the project MAY use a fuzzing tool (e.g., American Fuzzy Lop) or a web application scanner (e.g., OWASP ZAP or w3af). In some cases the OSS-Fuzz project may be willing to apply fuzz testing to your project. For purposes of this criterion the dynamic analysis tool needs to vary the inputs in some way to look for various kinds of problems or be an automated test suite with at least 80% branch coverage. The Wikipedia page on dynamic analysis and the OWASP page on fuzzing identify some dynamic analysis tools. The analysis tool(s) MAY be focused on looking for security vulnerabilities, but this is not required.

    Not sure exactly how this applies, but N/A isn't something that I can choose. There were early versions of web-based software (e.g., ESAPI Swingset) that demonstrated how to use ESAPI, but it is not directly attackable via DAST as it is simply an SDK (i.e., a library).

    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]
    Examples of mechanisms to detect memory safety problems include Address Sanitizer (ASAN) (available in GCC and LLVM), Memory Sanitizer, and valgrind. Other potentially-used tools include thread sanitizer and undefined behavior sanitizer. Widespread assertions would also work.

    We use Java.

    It is SUGGESTED that the project use a configuration for at least some dynamic analysis (such as testing or fuzzing) which enables many assertions. In many cases these assertions should not be enabled in production builds. [dynamic_analysis_enable_assertions]
    This criterion does not suggest enabling assertions during production; that is entirely up to the project and its users to decide. This criterion's focus is instead to improve fault detection during dynamic analysis before deployment. Enabling assertions in production use is completely different from enabling assertions during dynamic analysis (such as testing). In some cases enabling assertions in production use is extremely unwise (especially in high-integrity components). There are many arguments against enabling assertions in production, e.g., libraries should not crash callers, their presence may cause rejection by app stores, and/or activating an assertion in production may expose private data such as private keys. Beware that in many Linux distributions NDEBUG is not defined, so C/C++ assert() will by default be enabled for production in those environments. It may be important to use a different assertion mechanism or defining NDEBUG for production in those environments.

    There are runtime assertions, but ironically most people disable those (they, in fact are disabled by default in Java), so instead I am changing most of them to explicit runtime checks (except for things like certain invariants or sanity checks in private methods where we still have some assertions). Violations of runtime checks will throw some sort of RuntimeException, notably IllegalArgumentException for most of the precondition failures.

    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]
    If you are not running dynamic code analysis and thus have not found any vulnerabilities in this way, choose "not applicable" (N/A). A vulnerability is considered medium or higher severity if its Common Vulnerability Scoring System (CVSS) base qualitative score is medium or higher. In CVSS versions 2.0 through 3.1, this is equivalent to a CVSS score of 4.0 or higher. Projects may use the CVSS score as published in a widely-used vulnerability database (such as the National Vulnerability Database) using the most-recent version of CVSS reported in that database. Projects may instead calculate the severity themselves using the latest version of CVSS at the time of the vulnerability disclosure, if the calculation inputs are publicly revealed once the vulnerability is publicly known.

    None discovered because using DAST on ESAPI directly really makes no sense; there is nothing for DAST to test against.

This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit Kevin W. Wall and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: Kevin W. Wall.
Entry created on 2016-05-10 23:31:58 UTC, last updated on 2022-08-16 02:34:46 UTC.